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ABSTRACT

The purpose of this thesis is to show the capability
of strong viscous/inviscid interaction methods to predict
airfoil flows at low Reynolds numbers. Cebeci's interactive
program was applied to the Wortmann-Althaus FX 63-137
airfoil and the results were compared with the available
experimental data. It was found that the boundary layer
transition model has an important influence on the
predictive capability of viscous/inviscid interaction

me thods.
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I. INTRODUCTION

There are many theories to aid the airfoil design
process by computational methods, because of the desire to
reduce the number and cost of wind tunnel tests. A still
largely unresolved question is the problem of flow sepa-
ration. Because the classical boundary layer approximation
cannct be applied to separated flow calculations, engineers
have tried to overcome this limitation by developing
viscous/inviscid interacticn approaches or to develop direct
sciutions of the Navier-Stokes equation.

The purpose of this thesis is to demonstrate the
capability of the viscous/inviscid interaction method by
applying Cebeci's interactive computer program to a single
airfcil (F¥ 53-137) at three low Reynolds numbers and by
comparing the results with experimental data.

Chapter I1 explains the boundary layer theory. The
boundary layer equations are derived and the turbulence
models are introduced. Also, this chapter includes the
prediction of transition boundary layer calculations and
flow separation.

Chapter III introduces the interaction methods.

Three weak interaction methods are explained briefly and the
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sinultaneous method i1s presented as a strong interaction

me thod.
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Chapter IV describes Cebeci's interactive computer

s

program. Input/Output data description and JCL files are

. ,,
I
e

»

included. Also, the results of the application of Cebeci's

-
)
»

program are discussed.
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II. BOUNDARY LAYER THEORY

A. DERIVATION OF BOUNDARY LAYER EQUATIONS

Generally, the thickness of the boundary layer increases
with viscosity, or it 1s possible to state that it Jdecreases
with viscosity, or it 15 pocssible to state that it decreases
as the Reynolds number increases. From exact sclutions of
the Navier-Stokes equations, it was seen that the
boundary-layer thickness d) is proportional to the square

root of kinematic viscosity (V)

d(x) o [Vx

Tt
[V

rn
V4
uu

ot

where x 1s the distance from the leading edge of a
plate. Using the local Reynolds number

Re = U x/y., ) s |1

X Rey
For simplicity, assume a two-dimensional, steady

constant - property flow without body forces and leave the
stresses unspecified so that the results apply to laminar or
turbulent flow. If simplifications are to be introduced
into Navier-Stokes equations, it must be assumed that the

boundary layer thickness is very small compared with a

-

representative linear dimension (L) of the body, ie. d L.

-

In this way, the solutions obtained from the boundary layer

P S
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equations are asymptotic and apply to very large Reynolds
numbers.

From the Navier-Stokes equations,

x-direction: - 1 2P + 1 xx + 1 00xy = u Qdu + v 9du
P 2x £ dX £ Ay oX oY
y-direction: - 1 3P + 1 36yy + 1 936xy =u dv + v Qv
P 2y £ 2Y P DX dx oY
and the continuity equation is:
du + 9v =20 (2.3;
2 X oY
Inserting the "typical" (order-of-magnitude) values, replace

the dependent variabies as follows;

U o U du __ ue | ou ue
oY d 2 X 1

Then Eq. (2.1) can be expressed as

-1 3P + 1 236xx + 1 20xy = u Qu + v du
P ox L X P DY Jx 2y
e Cxx/P O xy/P ue ue. i (2.4)

1 1 1 1 1

where the typical values were written below the terms to
which they correspond.

Considering turbulent flow, all stresses are of the
same order ie. a general stress must be of order

2
f’Ued(/I, then Eq. (2.1) becomes

+ 1 Aabxy [1 +0(L)J= U du + v du (2.5)
P dY 1

1 2P
L dx

.............
............
-

.........
.........
-------



........

where O(JVI) indicates a quantity of the order of magnitude
of d/1.

Considering a laminar flow of Newtonian viscous
f£luid,

6 xx = 24 2u 0 xy =,a(_0_u +ﬁ)
Jx,

Oyy = 2429v (2.6)
Yy ax / oY

In the O xy term, 2v/ox is smaller than au/ay.

Therefore, Eg. (2.5) becomes
a 2
-1 2P +y 9 U [1 + O(é;).]= U du + v du (2.7)
P dx ay* 1 dx 2y

Similarly, Eq. (2.2) can be written as:

1 3P +1 30yy +1 230xy =u dv + v v
£ ay P 2y £ 9x oX Y

1 9 Y ue ( Ue !g{) ue d g&f (2.8)
P oy s Y7751 g it

If we write all the viscous terms together,

2p S V. (})’[1({_)‘] ue*d u{TJ (2.9)

1
r Y 1+ ue 1 1*

It is known that (d?l)lva/uel is laminar flow, so that the
viscous terms are also of order ue d /1 ie. oP/3y is of
order u::f/lz, but the pressure difference between y=0 and
y=d is of order pu:Jfﬂfand the difference in 9dP/2x will be
negligible compared to the external stream dynamic pressure,
1/2 fu: . Therefore, for practical purposes,

2P =0 (2.10)
2y




P R T e Y W Iy T T P T T VT U T WL py reervwaw ey vwe ™

For this case, since changes in P must be of the same order
as changes in y, the pressure does not change significantly v
through the boundary layer.

Thus, the entire equation of motion in the
y-direction may be dropped from further considerations. In
this way, the following simplified equations are left for

the analysis of a boundary layer:

du + dv =0 (2.3 |
29X y
1
-1 2P +py du = u du + v 2u (2.1D)
P dx 3yt 2x oy
3P = ¢ (2.10)
dy

These relations are known as Prandtl's boundary layer

equations. Unless one encounters very high Mach numbers,

LW PR Y

the abcve orders of magnitude are not changed when

compressibility effects are considered.

B. LAMINAR AND TURBULENT BOUNDARY LAYER :
The low viscosity fluid flow past solid bodies should be

considered as two regions. One is the thin region near the

boundary in which the effects of viscosity are concentrated

and the other is the region further away from the wall in

<
which the influence of viscosity is so small that it can be )
neglected. Thus, it can be stated that all viscous effects "
are concentrated in the thin region which is known as the 2

f
boundary layer. This boundary-layer type behavior requires :

-~
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high Reynolds numbers. Generally, the thickness of the
boundary layer (4) is defined as that distance from the wall
where the velocity (u) differs by 1% from that (Ue)
calculated by the ideal flow analysis.

Consider a constant-property, steady, two-dimensional
flow past a flat plate. If u/Ue is plotted against a
dimensionless y-coordinate, 7 = (Ue/vxf§7 » the velocity
profiles are geometrically similar and reduce to a single
curve for a laminar boundary layer flow. This is well known
as the Blasius profile. The geometrical similarity is
maintained regardless of the Reynolds number of the flow or
of the local skin friction. For a turbulent boundary layer
flow, since the viscous-dependent part and the remaining
Reynolds-stress-dependent part of the profile require
different length scaling parameters, there is no choice of
dimensionless y-coordinate that leads to the collapse of the
complete set of velucity profiles into a single curve.

The conspicuous difference in profile shape between
laminar and turbulent shear layers can be found in the wall
flows. Because of the constraint on eddy size in wall
f£lows, the efficiency of turbulent momentum transfer
decreases rapidly near the wall. But, the efficiency of
viscous momentum transfer is not dependent on y distance in

the fiow which has no heat transfer.

XV WY I W IV T TRV IR T TR TR TR TR IR TN TATA RN




C. TURBULENCE MODELS

The unsteady continuity and Navier-Stokes Equations are
valid in both laminar and turbulent flows. But, it is too
difficult to deal with the instantaneous properties in
turbulent flow because the turbulent flow has a complex
time-dependent behavior. Thus, the following turbulence
models are used to make the analysis of turbulent flow more
convenlient.

1. Prandtl's Mixing-Length

Consider two adjacent stream layers of fluid which
move with different velocities. 1If a particle of fluid
moves from one layer to the other, a momentum change occurs
between two layers. The fast particles which enter the slow
layer make it faster and the slow particles which enter the
faster layer impose a drag on it.

The mean velocity of a stream layer is 4, and that
of the other is u + 1 9 U/9y where 1 is the distance betwecun
two layers. Also, the fluctuating velocity in the
x~direction is u', and that in the y-direction (s v'.
Prandtl assumed that the turbulent fluctuations are due to
the difference in the mean velocities of the two layers. 5o
u' =1 3u/ay ie. the fluctuating velocity in the x-direction
is of the order of the difference in the mean velocities of
two layers which have a distance 1, where 1 is the mixing

ength. Prandtl also assumed that all components of
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fluctuating veloclity at a given point are of the same order

of magnitude. Thus, v' can be defined as v' = kl au/ay
where k is a constant.

The turbulent shear stress due to momentum exchange
between two layers is the rate of momentum transfer per unit
area. Then the mean turbulent shear stress on the fluid is

Ty= -pu'v' where u'v' =|1 2G/9y| |kl aG/ay| . Since the
values of 1 and k are unknown, combine these two unknowns.
Then, T}:=F12PG/ay|aG/ay where 1 is called the mixing
length.

2. Cebeci-Smith Model

With the eddy viscoslity concept, the momentum
equation for 2-dimensional laminar and turbulent boundary

layers can be written as:

(bE")' + m+¢l EF" + m[1 - (f’f] = i(f'_eg’ - f”.ﬁi)
2 X 2X

where x is the transformed x-variable
£ = Em/y
2k -
b= (1 +t) (1 +&)
Let the turbulent boundary layer be a composite

layer consisting of inner and outer regions. Then, the

eddy-viscosity formula for the inner region is:

K
(Em); =17 (L) |au

(0 Ly ¢y, )
- — — C
LA Y Y.‘

where 1 is the mixing length for 2-dimensional flow

18
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y 1 [ 1 R o 1 2’}
= - exp - X ( X - )
tr 1200 fr

Xtr
is an intermittency factor for a flat plate.

R = Up X4y/)Y is the transition Reynolds number.

Xtr

The eddy-viscosity formula for the outer region is:

(€m), = o

@
g(ue—u)dy Yer (y ¢y <d)

0

where Re > 5000, the universal cunstant o = 0.0168.

Rg ¢ 5000, o varies with Rg according to the
the empirical formula

o - 0.0168 1.55
1 + A
y
A =0.55[1-exp (0.243 h - 0.298h) |

h

But this model is not used in Cebeci's interactive computer

Rg /425 - 1

program which will be presented in Chapter 1IV.

D. TRANSITION

The boundary layer with a finite thickness starts out as
laminar at first in the flow past an airfoil. However, the
boundary layer becomes unstable and all small disturbances
begin transition to the erratically unsteady condition which
is known as turbulence.

In the boundary layer on blunt bodies, transition makes
the point of separation move downstream which decreases the
width of the wake. There is an abrupt change in the drag
curve of a sphere. This change is due to a boundary layer

effect and is also one of the transition phenomena.

19
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The process of transition on a flat plate at zero
incidence shows a sudden increase in the boundary layer
thickness. Furthermore, transition involves a great change
in the shape of the velocity distribution and a large
decrease in the ratio of the displacement thickness to the
momentum thickness. Also, it causes a large change in the
skin friction.

As described in the above, the transition from laminar
to turbulent flow plays a very important role. Since the
transition is not an instantaneous process and the flow {s
intermittently laminar and turbulent over a certain length
of the airfoll, a certain point where transition takes place
cannot be asziyned. At present, there are no exact methods
to calculate the flow within the transitional region.
Nowadays, however, two methods - Michel's method and the e’
method - are used to predict the transition empirically.

1. Michel's Method

Michel investigated many kinds of data for
incompressible flows without heat transfer and found this

empirical correlation,
0.46
Rg = 1.174 [1 + Zéqqg ] Rxcr
Xtr
where Rg = Ue 8/V, Ry= Ue x/) .
Since the momentum thickness grows more rapidly when

the pressure gradient is positive, Michel's equation

involves the effect of pressure gradient. However, the

.1
:
“
!




effect of surface roughness, which is also very important,
is not included.
2. The e’ Method E
K
This e9 method is of spatial amplification theory ;
Y
based on the solution of the Orr-Sommerfeld equation which W,
forms the point of departure for the stability theory of )
N
laminar £lows. o
e &
»
g' = a =espj (di - Fi adr dX e
3" {5 XA d Ar -
where X = x/ f*, K= 2. %, Bi=4 d° X
g'(x,y,z,t) is a typical disturbance function. .
oL = 2T (A is the wavelength of the disturbance).
A -,
Br is the circular frequency of the partial oscillation. e
v
Ar is the amplification factor which determines the $f
degree of amplification =
The basic assumption is that transition begins at ::
o
the point where a small disturbance introduced at the ey
l".
critical Reynolds number is amplified by a factor of e’ ~
;
.
T
E. LAMINAR BOUNDARY LAYER CALCULATIONS R
1. Similar Solutions ﬁ
2
a. Blasius Solution For a Flat Plate -i
l-
Assume ~ a flat plate at zero angle of attack .
X
- steady, 2-D, laminar, incompressible .

flow. T

21 N




R g

vo= - 24 = JuxU, df 27 - VU, (1/2 x ) f
X

- constant visccsity
- negligible body force
Since the pressure along the plate is constant,

there is no prescure gradient. The simplified Navier -Stokes

Equation is:

Y

2
u U o+ v du = y iig (2.12)
A x Y Iy

(B,C)

1}
o

y 0, u =10, w
y - ; 4 = UQ
To transform from the partial differential

equation to an cordinary differential equation, define the

following transformation parameter:

7 = | Lo y where 7= f(x,y)
V x
e T where £ = £(7) only

The stream function was defined to satisfy the

continuity eguation.

u = 3 =/uxu, df 97 = U, f', where f' = df (2.13)

2y d7 dy an
2y = U, dE' 27 = Uy £y [Us [ 1
ax d p) v 2xVa
=« Umf” (2.14)
L
-%
d%7 ox

9

1/2/va7 (£'7 -f) (2.15)
X

du = Up_df' 71 =0U_ f" Uw (2.16)

[ 4
Y d?7 oy YV x

22




I
ro
b4
~1

) .
du U,/ Uw df" 37 = Us  £"° (2,175 !
2 y? Vx d7? ay YV x K

Substitute Eqs. (2.13) ~ (2.17) into Eg. (2.12), *hen

"o

Suundary lLayer Theory” by Schlichting. From the

-

ff" 4 2 f"' = 0 L)

» 4

{B.CH ¢ = C; fr = ¢, £ =0 .
72 =@ £ro= 1 ’

- < b . . - . - . . -~

The solution vf thils Blasius equation is presented in ~

-

i

‘ransformation relation,

» ;!

d - 50 = 5.0 4 = 1.7208 p

X JUw x/v JRx . X [R, .

(—) - 0.8604 6 = 0.664 3
u ) RX X 'JRX

Ty = 0.332 4 Ug [N -

Y x .

~,' = 0.664 '

i
ey
;d

X - A
L. Falkner-Skan Method N
The Falkner-Skan transformation is for 2-D, N
~
A
axizymmetric laminar flow, The simplified Navier-Stokes g’
P
Equation 15 ';
..'
2 :
1 d2u + vou = -1 IP + Y, 2 u ‘-
dx y P 2 x 2yt
E.C) y = 0; u =0, v =0 f
L
y =o; a = U(x) 4
Take the same n as Blasius' but different with a function f
f + £(x,7) and follow the same procedure as Blasius' using A

23




' -1 dPp = U_dy
. P dx dx, then the transformed equation is:
i £+ m + 1 ££" + m [i - (f’)l] = X (f' I £ - fn 2§ )
2 J X 3 x
. where m i1s a dimensioniess pressure gradient parameter

defined by:

or similarity in 2-3, laminar flow, assume f is a functicn

j of Q only Tren,
h £"' ¢+ m o+ 1 Ef" 4+ le - (f')l] =0 (2.1.8)
)
. (B.C; %7 =0; f' = constant, f' =20
: 7 =w; £' =1

The fact that m is a constant leads to:
0 m
v = C X
where ¢ (s alsc a constant.
In the case of m = 0, ie. U is a constant,

= I wh.ooh

3

2. ... 18) reduces toc the Elasius equation. If
means a 2-0 stagnation flow, Eg. (2.18) becomes the Hiemen:
eguat.ion,

£ o+ f££" - (£') + 1 =0
Some solutions of the Falkner-Skan equation for various
values of m are presented by Cebeci and Bradshaw.

<. integral Methods

3. integral Momentum Equation




For steady, 2-D and incompressible flow,

) 3
u d2u + wvadu = -1 P 4 I, d u (2.19)
2 x dy P 2 X ay*
21 + dv =0 (2.20)
2 X y

From Eq. (2.20), u(au + dvy =0
2 x dy

>
2

At the edge of the boundary layer, U (x) 3U(x) -

Y

"<
\"_.
Q

=

Then, Eq. (2.19) becomecs:

d2u” 4+ d(uv) = U(x) d Ulx) +y 2
2 x dy dx ay?

Integrate this equation with respect to y, fromy = 0 to

y =4 . using T= 4 du

2y
{. s / 4 T
J du’ dy - Ux) du dy - | Ulx) du(x) dy = - —2
, 2% o 2 x 0 dx £ o(2.21;
* J
Also we know, J’ = S (1 - u ) dy
0 U(x)
s
6 = J u (1 - u )dy (2.22)
0 Uix) U({x)
Substitute Eg. (2.22) into Eq. (2.21), then,
* ,
auixaf o+ £ U du = Tw
dx dx /a

This equation is known as the momentum-integral equation of
boundary layer theory, or as von Kdrmdn's integral equation.
b. Pohlhausen's Method

Assume a polynomial of the fourth degree for the

velocity function,

25

’

YA

e

[ ¢
9
9




f(A)
U(x)

where A is the dimensionless distance from the
A= y/d and 0 ¢ A (1
(B.C) A ; =
A =

Also U(x) d U(x)
dx

i
d d U
Yy dx

where A is the shape factor.

then, £(A) = F(A) + AGWA)

3 4
where F(AN) 2A-2A + A

G(A) = 1/6 A (1 -N)°

”
Thus the boundary layer parameters d. 8 and Ty can be

determined, if the velocity profile is known, as follows:

- A

3__

2

_1(3_2_ - A —_44)

63 1 1

Ve 5
w A%}_L(2+%)

Thwaltes' Method

J*

d 0 120
0

T,

The integral momentum equation can be written

U(x)
3]




»
where H = 1L
e
Gy = Tw = Y,
2 P U*(x) e U(x)
2
K = 6 dux)
)% dx
then Eq. (2.23) can be reduced again.
P 3
Uex) dée = 2 L(K) - [H(K) + 2]} = F(K) (2.28)
Y dx

Thwaites writes an exp-ession for F(K)
F(K) = 0.45 - 6K
Then we can write Eg. (2.24) as
2 L
Ux)8 = 0.45 ju (x) dx

Y usex) J,

If © is calculated for a given external-velocity
distribution, H and Cf can be determined with the following
relations.

For 0 ( K ¢ 0.1

L

fl
(=]
[}V
3N

+ 1.57K - 1.8K

H =2.61 - 3.75K - 5.24K

For -0.1 ¢ K (<O
L =0.22 + 1.402K + 0.018K
0.107 + K
H = 0.0731 + 2.088

0.14 + K

3. Finite-Difference Methods

The finite difference methods are the most flexible,
practical and efficient methods to solve the boundary layer

equations.
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The vox method, presented by Keller and Cebeci, is

vl r N

introduced here as the preferred finite-difference method.

The momentum equation achieved by the Falkner-Skan

ct

ransformation can be rewritten in terms of a first-order

R4

oo
e

em of

U
¢7]

% 5. Then the resulting non-.inear system is

Linearized by Newion's method. Finally, the bl

Cr

O

(o7

e.imination method s used o sc.ve tie lineari:ce

"

J.ffere:nce egquations cf the bourndary layer problem.
£ Zux Methoed.

Csing the new cocrdinate system, £ and £, the

(r

,.
3

th

crmed momentum equation for steady, 2-C,

['0
Wi

sic.e flow becomes:

1
)
8]
3

o)
"

e

n

in—l £ ;"

ig.ure 2.2 Net Rectangle Fcor Tifference Approximaticrn



A prime denotes differentiation with respect to 7.

The boundary conditions are

7=0; f(% 0) =0, ut§, 0) =0 (2.26)
7 = A soul g, 7,) =1
We denote the net points shown in Figure 2.1 by
n n-i
'go=Q;;= ‘ + Kp n=1, 2,..., n
7, = U 7a'f 75-1 + hj i =1, 2,..., J (2.27)
77~ 1w

Here n and j indicate sequence numbers.
. n 7 ; ‘

With 95 = gl fru j) denoting the value of any
quantity at the mesh point ( gn, 7j), centered guantities
can be written as two-point averages:

n-% n-1

n
£ =1/204%+§ ), = 12075+ 7i-1)  (2.28a)
n-h n n

n- n n
?3‘ = 1/2¢( g?w ' PRE 37._2 1/2¢ ¢4 ¢ o) (2.280)

The finite difference approximations of Egs. (2.25a)

and (2.25b) for the mid point of the segment P, , P are:

a
" n n
f 4 - fea = u}-bﬁ (2.29%a)
hy
n
qg -~ Ug-t = %;—93 (2.29b)
h.
F g

Eq. (2.25c) can be approximated similarly by

centering about the mid point of the rectangle P1,P2,P3,P4.

1. Centering Eq. (2.25c) about the point
n-Yi
(g . 7))
Let the left-hand side of Eq. (2.25c) be L and use

Eq. (2.28b)
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n-¥
n n-1 ‘M o-4 n n-t n-7/y n n-t
I o+ Loy = % Ju (u - u)-v (f £
K K
n-" n "
; a a2 n-t n n-t n n-t _n n-1t
- (u”) - {u™) - (fv) + £ voo- v £« (£
~
2K, -
By rearranginy,
'\n B} - - n - 2.\0
{bv') + m_+ 3 (fv + m PO :
2
)
-
A n-% n .
L] n =t n r- n LR
= - L # (a*) u®) - (fv) + f vo- v £ - & J
~n
n n n -1 n n-t n-1 R
N . T 3 e N O S U = O VL R VA e S 1
n-h n P
where X = 3 A = m_+ 1 +Kg K= mooor o
’ ' ) T
Xn 2
n-} n- n-\ n-l
R = - L +d Efv) - u® ] -n’
n-
n-l , o Py
L = [Fbv)' + m + 1 (fv) + m(l - u )l
2
2. Centering Eg. (2.30) about the point
. n’yL \ Ty : rn n \
; ; . 7., Using Eq. (2.293,
- A n
. non )
E bv) '1_ = bj vi - beyvye
-5 o
b4
The Eq. (2.30) becomes
‘-l N ) " "o , n 2,
AP -.b)- v, Si0 Vi) +o<,\fv)’_x - uT gl
LA n n-i n -1
+ iV £, £, v, ) =R (20310
Viex TrAT T Ti-x i % L
whera N n-t n
A=y r . . .
. = -~ + H - o - -
.3'”‘ { ’.)i o4 (fv ’X. Ld )’ ,‘] m a
, ot = =) ’ . . \ - [ U X .- N SR
A..i_.,i = [h:‘ \b“V’ - b’_, V}_' . + m : i \.\119'-&* Mioa—a J"/i
“
] s . n
The bcundary conditions at ; = § ., are
n
£, = O, il = 0
n
gj = 1, 2.32
=C
e . el e e ATy N O g O N R

PR Y



b. Newton'’'s Method

For simplicity, let (f; . u; , v; ) be 3
n
(£5, uj, v;) at §=%". :
Then Eq. (2.29) and 2.31) can be written as .
P % (ug + uyy ) =0 (2.33a) X
uj - ougy - b Gy o+ vy, ) =0 (2.33b)
‘ .
hy (b vg = by wgm )+ L(EVIGy - o (0 gy 3
, n- n-i n-l .

*-d\vJ;Z £-%x - f?‘% Va-x ) = Ri—%. (2.33c) .
n-i .
Here the unknowns are on Lhe left-hand side and Rj-u -
involves only known guantities, R
Now, Newton's Method is applied to turn h
Eq.(2.33) into a linear system complemented by boundary K
cornditions Eq.(2.32) and initial values .

o) (o (" .

fL = 0 u: = 0 ve = v,

(® LA o) _ n-t ®) _ At C g A
fj - iy uy = ui vy = vy {1 <3 < J-1)
S n- (9)= () _ a-t
7 - fJ U5 1 V) Vg

The superscripts in parenthesis represent the iteration g
number as follows: P,
w ) I . . ‘
f) ’ ua": V" _ 1 = 0, i, 2, :
(:'o-)_ (i_) th (1) _ (4] () (re0 _ o , ) ”
fj-f?+[f’~, ua‘-ua+Ju)-, Vi —v:-+[Ja- :
where Jf <C £, Ju << u, v < v. K
LY

Replace fg, us, vy in Eq. (2.33) with these expressions.
Then Eq.(2.33a) becomes:
) () ‘

) ) . u ) ) d)l_ A
t; ey - £, -, _?:_([ua-+a(u}+ ugl, + Jugl =0

»

A VLR
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At Jfircd .'.‘.'.'.‘.".‘.'“.'.'.':.'
A P R . .. -

Thus,
/f,‘- Jfa'_,— _gg[ful */u,;,J = (ry (2.34a)

where (r,)j =t - £y ¢ hyu,y

From Eq. (2.33L),

m ()] ) ) . ' PR oy - D :]
e .o - . - \ . . . =
uj Ju‘ Upey =40 he [v AT IR 7R R c

A ? ”
[l . .
/ui T dugyhe [/Va‘ ¢ IVC,‘.‘] B R t2.380)
al
" m o)
where (rj)y = wu,, - u; + h, Vi-u

From Egq. (2.32¢c)

ll‘! ll‘)

- (l.) |;; [|') - /l‘) (4 Y
h ) ¢ by /v; - by, Fvgo ) gy - o diat iy

"ot 3] n- TS
+ of (Vyoy ff’-,x - fa-_'/‘ IV .y )
R n-t [h - b('.' (n b(;i “ , o \(‘.) A\h‘;
RS PR AP B P P bt CEv gy datu ey

IRt e
b V;"/; ‘frx - fa'-‘A V:'-,A }] _ :

”~ "’.' - . E 'al, . "(" . [
here 0(fvla-_,,‘» 172 [f’dv- + v, 4 fL s f:ﬂdvj_, + .a_,lf,..J

| | E i’ti
/(u'“;xa = u;) / u;f + u;f,d-ugﬁ,
‘/f;-',',/z 1/2 (f f;{, v /f:‘_‘, )
J ”a"-;;a = 172 (4 v‘,f" + fvl )

then (sl>a(~s[\;-,‘ + (S;‘)a‘/:v,;. + (‘s_; )y £, ¢ (s4y l.fa_, . (E"{’."f\“
‘ 3‘ ;ud_l- (r‘)i | (2 330
where (ra)y = R;TK - [h;(b;uv;'— b;J v;: ¢, f.;_%
=~ ofy(u :"4 + o (v;_-;i f;_,y‘ - f;_-,; "'a?')’a ; J
(5,0 = hy b'; + % f;'-.' - i: £

J\ )A';‘J.,' *



C—— ol - + o
(54)3 _f Vi _5 va_A
"
(Ss)j = - nglj
)
(S‘)j = - o, U,

the boundary conditions are:

Jt, = 0 fu, = 0 fuy = 0 (2.35)

c. Block Elimination Method
Egs.(2.34) and (2.35) are the linearized
difference equations of the momentum equation for external
flows which has a block tridiagonal structure. We can solve
these equations by means of the Block Elimination Method as
discussed by Keller (1974).
Let us define the three-dimensional vectors, d;

and r, to express the system in matrix-vector forn,

é

({fé

r fug 0 £33 &
Jva‘
-
0 (r, )é
ro =(0 ré = | (r, )J 1 ¢ ¢ J-1 (2.36)
(ry ), (r, ),»J
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matr.ces,

3

X

o~
- 0
(@ [7p] (.
~- A2
)
[oF] .
- e~
) a
© [#3] -4
£ ~e |
‘e
-
-4 wn o
| SO )
H . 4
i
o]
Ko
o |
o
A
4
Y
)
-
A2
(&) (&)
(@) 4 -
|
. > ©
| -
1}
o
T

]
1]
sy
———
[
(&) ) [
o3 el
. Y
(o) [{p] PR
\n .-
! "
)
)
o - O
—_ 1
Il
o]
L

o]
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where
~ -
Ao Co (tfo I [ i W <
B, A, C, J, r,
ﬂ = Ba. A:‘ C‘\ {= /’ K = rJ &
o7 S7-1 ry.
BJ’.| AJ-| CJ-. J.JJ rJ
L By Ayj . [T ) !
Let us factorize the matrix g to solve Eq. (2.138) &
8 = xy (2.39) -
where - r 1 =
1 Y, C. 5
x, I Y, c, "
/} = xa E ) » y’ Ea i ;
XJ_,I I yJ-ch-l :
X
L 3] L YJ_J N
':'
Here I is the 3 x 3 identity matrix. -
A
X and y; are also 3 x 3 matrices. ::":
According to Eq.(2.39), we can find E“
Yo = A, (2.40a) >
Xj y;j- = By (3 =1,2,..., J) (2.40b) o
y; =A; -~ xjc,, (3 =1,2...,7) (2.40c) 2
g
and the matrix x, has the same structure as that of the N
matrix By, Therefore, x; has the elements like this, ”
(X w )y (X505 (x5
X, = (xa )y (X, )4 (X ,3); o
? o & % -
=
£
‘vl'
35 ,.1
X
e

a8
v 'r




P e )

and y; can be denoted as:

Yy
From Eq. (2
(Yu to =
'yal )a =
“rcem Eq (2
X, =
X o), =
From Eq. (2
7o "3": 1
\yz‘ JJ =

Then we can

12.40b) for I L 3 <7,
Xy y =2 { ¥y, *h (%; (Yar )y,
'o s L“
= ( .y 2 , ‘. , .
.X‘la = - i i(;:]‘) + X gy ‘9 [‘Yy.l Ia‘”‘%

(yo Y3 ¥yl (yp)s

(S3 g Wiy )5 = (Sglg— (X307 (Yayig=

s - ——y
R N Y T e T a¥e T e Fa™aTen

= (yn )a- (Y )a~ (ya_;')a' ’
O —1 _ha.Q' /2
.40a),
1 ST (Y300 =0
S Yaaly =1 ¥,3), =8¢
.40b)
-1 (x,;), _1/2 hl (XIJ), = 0
(sa), (X530, = {sg), + {x,,), (x,3), = -2 {siip,
.40c)
Yy = “he -ixy305 (y;3)y; =Dhz (x,3)7
2 2

compute the elements 0of x with Egs. (2.37 and

S ‘3.”] }

J

X “\‘J‘ 1 (S‘\)J‘ (YI| ‘);‘-\ A \SQ}QV '\}’z.?"g'-. h -
Y.y (S ty e T USg iy Yy ig }
Yo -?? [ “ '3 22 g~ P} PR PO J
T - AL P R PP L ) [(Yu [FE ~'1',A";‘-‘J %
Y 2 2
(X‘J:{ = (Xa, )y (yu. \’J‘-' M (xu'\li"yu )3‘-| - -
yo= (yl] \',3‘—|¥‘(YLI’ \'l-l‘ - ‘;'{JJI"_, ()—'“"\,'9‘~|\ ‘ -
-'—51 [\’II* "q- RV e TTaa g Y -
. oS
'.:'. LN 5-' » e . BRIV T

Py e
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e

y, = _%j (yla)jq - (y*;)a\_|
Let y4 =z, then xz =R (2.41)
Thus, z, = r, (2.42)
Ty T fe T Xy Zg,, (1 ¢ j ¢ 3)
where (z, )y
z2y = (235‘ (0 3 &)
(2,5

From Egq. (2.42) for j =0
(z,), = (r, ) (z,), = (r,) (z23), = (ryl,

and for 1 ¢ 3j < J

(z,)y = (rylg — (xy )j(z,)$' (X2 )5 (2405, (x,3),0z3)4",
(zy); = (ralg - (xx,)a\(z,);;, (X 5‘(23)33 (X;33J‘(23)jq
(ZJ)i = (ryly
From Eq. (2.41),
Yydy = 23 (2.43a)
yil} = z4 - c3~4;*, (0 ¢ J ¢J-1) (2.43b)

Then the vectors can be calculated with Eg. (2.43). The

three components of , for j =0,1,2,...J-1, are:

JUy = - hgn Sy - e

fvj =1 {(Yu)a" [(z, g ey, )3‘] Sy a )y 2y me )y Y }

!
Ya 9
W/ "3' =1 [(z,)j - (Yu )f Jua‘ - (y,]>,~ JVJ-J
(y")i
where e, = (z;); ~ oug, + _hin 4§V,

2




-

Fr Tl § § 5 ¢ 7 W VS
[y®]

and for j = J

4 dy = iy
I;VJ = €2 (yq) Vg - e3 (y, "Jl
LY 3 RAS YRS - ‘Y;;)J‘Yn )y
/Wy = ea - {(y,3 )J J‘VJ’
‘Y, JJ
where e, = {(z,)5 - {y,, yduy

e3z = ‘ZA)J - (yu )j/UI

v 3
y

o
u
1]
(¢
[+¥]

culaticns are stopped when
- (l') .
d v, ’ <€
where v(o! 1s the wall shear parameter.

€ is a prescribed value.

1y

TURBULENT BCUNDARY LAYER CALCULATIONS

Tarbulent fluid motion iz an irregular condition of flow
i which the various quantities show a randcm variation with
time and space. Therefore, turbulence is characterized by
random and chaotic motion of fluid particles.

The velocity varies randomly at any point in a turbulent

£1aid. The velocity components in a three-dimensicnal

-
-

turbuient fluid are:

P

d = 2 + a’
vV = \7 + V' _.
w = W + w'

28




where u, Vv, w represent the mean velocities
1.
u = 1 S u dt, and so on.
t, - t| ¢,

PR T

a', v', w' represent the amount of fluctuation of the 9

instantaneous velocities from the mean velocities.

AN

Obviously, we can see that
ty
1 Ju' dt = u' = o, etc.
ty - t +,

Similarly, the following gquantities can be defined,
ta —

ju’; dat = u'L , etc.
t). - tl &
ta
gu’v’ dt = ua'v', etc.
tl - t' t’ by

—

fu

Even though the flow is turbulent, the time-dependent

-

momentum equations are valid. However, it is impossible to

PRy

solve the momentum equations for turbulent flow because the =

fluctuations are random and chaotic. Thus, Reynolds

5508

madified the momentum equations by introducing the mean

lll.

u . s
value and fluctating values of the flow guantities and by
assuming the fluctuations to be continuous functions of time

and space. From the momentum eqguations, c.

du + udu + v _du + wou = -1 9P +p( Ju o+ du 4 fu)
2t X oY 2z P oX o x* oy? 023

By multiplying the continuity equations with u

u_é_u+iy.+a):0 p
0 X oY VA
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Sum these two equations and rearrange, then,

2u =~ 19P + 3 (You - u‘)+ 9 [Pu - uv) + ;i{ji_ - uw)
2t f 9x oxX \ ox oy \ oy oz dz
Here take the mean value of each term using u' = o,
oG + u') =_du +_2u' = 9@
ot ot ot Jt
-1 P +P') = -1 2P
r 9 X £ 9x
—_— - - = A
va(ﬁ + u') - (u +u'") =Yau - (u* + 2 Gu' + u)
X Ix
=VJIa - u* -’
R Ee—— _ _— x
y 2lutul) =Ydu - uv - u'v'
Y% oy
du_+ u') =VYIG - uw - u'w' (2.45)
22 Iz

Substitute Eg. (2.45%) into Eg. (2.44) and rearrange. Then,

u
z
= - 2P + 4 o' P! du't su'v' 4 ou'w'
X ~“ P ox oY 9z )(2.465)

({g_ + u9u + Vv J
/0 at 9 J

o

+ W

QU
£

=
Qa

By similar procedures for the other dlirections,

(o(ai + u 99V + v ov +§9\7)
ot X by 0Z

= -9P +u(V —/( dviu' + v+ av'w') (2.46b)

= - 9P +uw -gfdw'u' + dw'v' o+ dw' (2.46c)
ﬂ 2 X Y 22

du + IV + dw =0 (2.47)
oX 2Y - B A
40
T T E T O T Ot DT, [ P B RN A SRR
ﬂ:';f\*u’:*\fm’\"\'\“;’\”\fm’s;ﬁ’;L;tmfmfslxi-L)fx’u‘\';t; PR RGN R YA I I




,
'
;
Lo/
In lamlinar flow, we have 4 unknowns and 4 equations. .
But in turbulent flow, we have 10 unknowns and only 4§ ;
equations as shown at Eqs.(2.46), (2.47). This is the a
reason why we need the turbulence models which were }
discussed in Section C. ,
»
~
;
o
G. SEPARATION
in some cases, the boundary layer thickness increases f
considerably in the downstream direction and the flow in the :
boundary layer reverses its direction. The change in .
direction causes the decelerated fluid particles to move ,
outwards, which means that the boundary layer is separated 2
from the wall. This phenomenon, boundary layer separaticn, "
is always related to the formation of vortices and to large :
b
energy losses in the wake of the body. A
o
Let us consider the simplified boundary layer equation -
in order to investigate two-dimensional separation; N
a e
u Ju +v Jdu = -_1 dP + Viu 3
ox oy Y 0 X dy* A
and define the separation as ;
( Su) = 0 ::.
dY Jy=0 R
Since u =v =0 at y = 0, =

l)( Qlu) = 1 2F

A
2y, P X

TR L O R O L G R 8 S g S S

N SRS ~ \"\"*.'\



The velocity profile in the boundary layer always has an
inflection point in the region of decelerated flow and the
velocity profile at separation point must have an inflection
point. Thus, separation can occur only when the flcw is
decelerated. In two-dimensional separation, a bubble of
fluid which has low velocity is always formed. This bubble
is often unsteady and distinguished by interior streamlines
which are closed loops or which extend to infinity.

There are two severe problems in boundary layer

-

i. The Goldstein singularity at the separation point in
direct boundary layer calculations.

o

E calculations when separation occurs.

:

2. Numerical problems downstream of the separation point.

If a boundary condition prescribes the pressure

gradient, then the boundary layer methods suffer from a

singularity due to separation. Moreover, the singularity

E: causes the numerical breakdown in direct boundary layer

methods near the separation point. This Goldstein

singularity can be overcome by using the displacement

1 shear stress, instead of the pressure

[

thickness or the wa
gradient, for the boundary condition, which makes it
possible to integrate the boundary layer equations through

the separation point. Also, the full Navier-Stokes

equations exhibit no singular behavior.




On the other hand, the boundary layer equations lead to
a numerical instability in the region of reversed flow. The
FLARE approximation is the most common method to overcome
this instability. The momentum transport term
u Ju/gx is deleted where u is smaller than zero. But the
accuracy of this approximation decreases as the region of
reversed flow increases. Therefore, it is necessary to
introduce an upstream influence in that region. This is
incorporated by the downstream upstream iteration procedure
(DUIT) which consists of a sequence of alternating up- and

downstream sweeps with the momentum transport term u gou/dx.
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III. INTERACTION METHOD

A. INTRODUCTION

If the flow remains attached and the Reynolds number is
high, the pressure distribution and the overall 1ift force
can be obtained from a potential flow solution.
Conventional boundary layer methods provide additional
information about the skin friction distribution and the
overall drag force. However, if the flow separates, no
information is available for regions downstream of the
separation point. Therefore, the overall forces cannot be
obtained.

For this reason, interaction methods are introduced to
overcome this problem. They provide a special coupling

between the inner viscous and the outer inviscid flows, and

can be classified as follows:

1. Weak interaction methods
a. Direct method
b. Inverse method
c. Semi-inverse method
2. Strong interaction method

The weak interactions provide only a loose coupling

between viscous and inviscid regions, i.e. two different

regions are treated alternately. The viscous flow solver
33
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deals with the flow in the viscous region and yields the
boundary condition of the inviscid region, while the
inviscid flow solver deals with the flow in the inviscid
region and yields the boundary condition of the viscous
region. The exchange of information through the bourdary
condition is slow, but regions such as those near separation
and trailing edges require fast and direct coupling between
viscous and inviscid region. While the strong interaction
method treats displacement thickness and external velocity
simultaneously, the weak interaction methods process one of

these guantities as input and the other as output.

1. Inviscid flow methods
a. Direct boundary conditions
(1) Prescription ¢f the airfoil shape
{2) Zero normal velocity at the surface
b. Inverse boundary conditions

Prescription of a velocity distribution for

the unknown airfoil shape

D

Viscous £flow methcds
a. Direct boundary conditions
(1) No slip condition requiring zero normal

and zeroc tangential velocity at the

sur face.
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(2) Prescription of the external velccity
il.e. u-component of velocity at the
edge of boundary layer

Inverse boundary conditions

(1) No slip condition

(2) Prescription of the displacement
thickness

Boundary conditions for simultaneous

interaction

(1) No siip condition

(2 Prescription of a linear combination of
displacement thickness and external

velocity

WEAK INTERACTION METHODS

1. Direct Method

A direct inviscid flow solver is combined with a

direct viscous flow solver (see Figure 3.2). The boundary

conditions are:
u (x,0) vix,o)
4 (x, ¥y ) = Ue (x}
This method is terminated at the point of vanishing
skin friction. In the direct scheme, the pressure is
caiculated from the inviscid region, but the Jdisplacemen

thickness is determined from the viscous regivn. Because




this phenomenon and Goldstein singularity, this method is
not appropriate for flouws w.th strong interference effects
between viscous and inviscid regions.

2. Inverse Method

This method consists cf an inverse inviscid arnd an
inverse viscous flow sclver (see Figure 3.3). The bourdary
conditions of the inverse bouandary method are:

u (X,0) =0 , Vi(ix,o) =0
B (X,¥) = a(X, Yo [y, - 4T x) ]

where 4 is the stream function.

The roles of displacement thickness and external
velocity distribution are exchanged in this method. The
troubles related to the Goldstein singularity can be
overcome, but the whole procedure takes a long time due to
very slow convergence. Thus, this method can be applied to
the regions of separated flow only and needs severe
under-relaxation.

3. Semi-inverse Method

A direct inviscid flow solver is combined with an
inverse viscous flow solver (see Figure 3.4). The input is
the displacement thickness and the output is the external
velocity distribution for both solvers. The two external
velocity distributions are combined and then an updated
displacement thickness is obtained through a relaxation

procedure. A formula for satisfactory convergence is:
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dnew {(x) = dold (x) T+ -.-( ey X) )

where w is the relaxation parameter.
The numerical weaknesses can be cverccome, but *he

coupling is still loose.

C. STRONG INTERACTION METHOD

The simaltaneous method solves the boundary layer
ejuations subject to an interaction law {(see Figure 3.5).
Visccus displacement effects are allowed to cause
substantial changes in the external velocity Jdistribution.

Since both displacement thickness and external velocity are

treated as unknowns, one more additionai: rela*ticn, *“re

50
called interaction law, is needed. Thus the becundary
sonditicns are
e iX,o0 = 0 vixX,0! = 0
: N ’ N - X . oo~ -
b X, Yo = AliX,Ye Yo — 0 x] 24
0o Xa r{'
i X, Ye " = U (x) LS | d |af.ye Aﬁf] o} |
d X
X, 93 i

The la:%t equation represents the interaction law.

Here, the external velocity for the boundary conditions

can be written as:

-
.

U (x,ye) = Ug (x) = Up {x) + & Ue (x) (3.5

C

o
where U, (x) is due to inviscid flow past the airfoil

Ale (x) is the perturbation velocity due to the

displacement effect of a boundary layer.

-
-
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To obtain AUe(x), the blowing velocity concept is used. Let
us consider an airfoil along which sources are distributed
(see Flgure 3.1). This surface distribution of sources
represents the effect of boundary layers. There are two
ways to predict the displacement effect of a boundary layer

on the outer inviscid flow:

1. Compute the inviscid flow past a displacement
body
2. Replace the condition of zero normal velocity on the

sut face with a condition of prescribed blowing
velocity at the surface

Y

1
I
[
!
I
I
J
I

Figure 3.1 Blowing Velocity Concept

The streamlines are displaced away from the surface by
the distributed sources which eject the fluid at the
sur face. Thep the virtual displacement body becomes a

streamline and the flow tangency condition is:

» *
v (x, dy = 44 (3.6)
Ug(x) dx

From the thin airfoil approximation, the displacement
thickness is assumed to be so small that u-component of

velocity do not change across the layer and the airfoil in

R I IS

S

AR

. e -
SRS

. .
—tala’,

A

—
b
.
NG
-I
‘_1




L e e

this connection can be represented by a straight lirne.
Therefore, the blowing velocity vix,2' s egua. to half

the scurce strength ¢ (x'.

v (x,c) = 1.2 ¢ 'x’ 137
#*
* {
vix,o' = vix,d - oV dy
o 9Y
, . # K
= 'Ve a¢ + d g:'ﬁ"
dx 32X
.
= d Ced 3.8
dx
Thas, d le g = 12 ¢ (x; {3.3
dx
Ncw, the perturbation velccity due %to the displacement

(4
tn
th
(']
9]
ot
(9]
w
r
1
L %
"~
3

ot
or
1]
v
W
7]

2 Teix' =_t S T8 a3 NI
’\’r o
2 X
X, 3
Tinailiy., Eg 3.6 becomes:
0 Xy
Celx' = Ue ix' +__1 S 63 a3 3
27 X -
WX
oo 3..1" represents the interaction law irn usatble fcr
*he integral on the right hand side is xnown as -he HIl
integral
In the simultaneous methcd, the inviscid flcw sclve
prcocvides an initial external wvelocity Jdistributicn, bat
inviscid flow soliver is not incorporated in the cveral:l
iteraticn gprocess Thos, the viscous flow sc.iver rneeds

3
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Airfcil
Gecmetry

INVISCID FLOW SOLVER

(Direct Boundary Conditions)

Input: Updated shape of
displacement body

Output: External velocity
distributicon

VISCOUS FLOW SCLVER

(Direct Boundary Conditions)

Input: External velocity
distribution

Output: Displacement thickness
distribution

CONVERGENCE?

Comparison of old and
new displacement

\\\\\ thickness

Fiqure 3.2 Direct Method

.
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VISCOUS FLOW SOLVER

i !
! |
! (Direct Boundary |
| Conditions) |
fInput: Updated shape of l
i displacement body I
IOutput:External velocity |
| distribution l
l I

! i

I

| (Inverse Boundary :

| Condition) |

I Input: Displacement thick- |

I ness distribution l
| Output: External velocity |
l distribution ]
! |

J 1’t(x)

CONVERGENCE ?
Comparison of external
velocity distributions

Usl -

#*
Uev = 02 d (0

\-\n"l.

B LY N T

NG5S

o~

L A

RELAXATICN

J I

i !

| Update displacement thickness | :
| distribution thickness distribution | -
! and the two external velocity !

[ distributions. I

| !

Figure 3.4 Semi-Inverse Method .
-
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|
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I VISCOUS FLOW SCLVER !

i and INTERACTION LAW !
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Figure 3.5 Simultaneous Method
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IV. DESCRIPTION OF CEBECI'S INTERACTIVE PROGRAM

A. INPUT DESCRIPTION

1. Introduction

The Reynolds number is the most powerful parameter
which can affect the flow. Wholly different flows can
result from different Reynolds numbers (e.g. 6.0E + 06
against C.28E + 06). Even though a flow with high Reynolds
number behaves well and does not separate, it may have an
extensive flow separation at a low Reynolds number.

Numer ical breakdown in boundary layer computations is partly
due to this extensive flow separation at low Reynolds
numbers. To avoid unrealistically large regions of flow
separation, it is necessary to make some changes in the
turbulence model for transitional flow. Reduction in
transitional region to a proper level is a method to
decrease numerical problems in computation. By decing this,
more reasonable results can be obtained in low Reynolds
number flows. Also, the computation at low Reynolds numbers
needs more iterations to converge than at high Reynolds
number, and the lift coefficient increases with Reynoids
number at the same angle of attack because low Reynolds

number flows exhibit a stronger displacement effect than

high Reynoclds number flows.
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...............................

The results may be affected by transition location.
The transition location can be either fixed by the user or
computed from the following empirical formula given in

Cebeci and Bradshaw (1977).

</

R, = 1.174 (1 + 22800 )RX (4.1)

Laminar flow separation, however, may occur upstream
of the transition location predicted by the above equation.
In this case, it is assumed that the onset of transition
corresponds to the point of laminar separation, and the
following message will be issued in the output:

TRANSITION LOCATION HAS BEEN RECOMPUTED AT THE
POINT OF LAMINAR SEPARATION

The results of this program agree well with the
experimental results up to stall at high Reynolds number
flows. However, low Reynolds number £flows may not agree
well or experience numerical breakdown close to stall with
the following messages:

at the very top of output,

+ IFY 002 I STOP 1
or at the very bottom of output,

IFY 207 I VFNTH: PROGRAM INTERRUPT (2)-
FLOATING-POINT EXCEPTION OVERFLOW

IFY 259 I STNCT: /ARG/ = /argument/,
(HEX = hexadecimal), APPROACHES SINGULARITY
or MAXIMUM NUMBER OF ITERATIONS EXCEEDED

Thus, the range of angle of attack should be considered

carefully.

......................................
...........................................



e

I1f the user requires many sweeps witli IPRNT = 0 or

2, then the user needs to choose class "G" or "J" for enough N
running time and add additional command ", LINES = (m)" just 37
after nnnnP on the following line to make enough space for ”i
print: ‘:

1i* MAIN ORG = NPGVM1 nnnnP , LINES = (m) S
.
'5‘
where nnnn is user's ID number. ;
m is the number of output lines in thousand &
‘e
(Generally 10 s enough) F

If the user does not do that, the following error

message will be issued at the very top of the output and

printing will be stopped abnormally:

. IAT 1600 JOB number {user's job number) LINES EXCEEDED "
IEF 4501 user's job number - ABEND S722 U0000 e
.
2. Detailed Input Data Description ;
The input to the computer program consists of 1 i’
title line, 3 control lines and airfoil coordinate. User ?
must follow the data format for specified column and type. E‘
~
T—EIEI;_LIQ;__T FORMAT (18 A4) N
"""""""" X
This line provides any description as desired with ;
o

any acceptable machine characters.

| Control Line 1 | FORMAT (5 I5)

WO TR

a_ v
fnla'aa
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Pl Tl Sl

Column

5

10

15

25

AT T T N e T e Nt
P PN 4 "
N AT A AT LA N ____.

Explanation

Transition flag for the

lower surface

Transition flag for the

upper sur face

= 1 Point of transiticn
has to be specified
by user. This option
shall be used if ex-
perimental results
are available or to
avoid csciilations of
the computed transition
points. In the latter
case, fix transition at
the most upstream
occurrence of computed
transition.

= 4 Point of transition
will be calculated
according to Eg. (4.1).
No input is necessary
for XTRL and XTRU. The
computed point of
transition will be
redefined, if laminar
separation takes place
upstream of the
location predicted by
Eq. (4.1)
Boundary layer restart
flag.

Read Starting Solution Store Final

solution or Unit 2

Yes
Yes

Leave 0 for general use

Number of sweeps.

Low Reynolds number
flows need more sweeps
to converge.

Print flag to control
output print.

-‘\_-\. Ty \‘_

e e ot e e M et ettt et e
e el .-\.-‘._-\_-\. TR _-..__-"\




= ~1 Summary print for the !
last two sweeps .
-

=0 Summary print for each
sweep.

= 2 Whole print for all
sweeps.

i Control Line 2 | FORMAT (4 E10.0)

Column Name Explanation

e NS

1-10 RL Chord Reynolds number 4

11-—20 XTRL Fixed transition location
for lower surface

21 —30 XTRU Fixed transition location ‘v
for upper surface when the
stagnation point is above
the leading edge, XTRL may
be positive. When the k

stagnation point is beneath S

the leading edge, XTRU may 4

be negative. =

31 =140 ALPO Angle of attack in degree f

| Control Line 3 | FORMAT (IS) .
Column Name Explanation ‘

1-5 MPTS Number of airfoil :
coordinates. N,

I'A

________________________ .
| Coordinate Data Line | FORMAT (2F 10.0) -
Input dimensionless airfoil coordinates as two columns in :
one row ( x/c, y/c). The order is trailing edge — lower )
surface — leading edge —> upper surface — trailing =
edge. Thus, trailing edge is input twice. -
:

o
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OUTPUT DESCRIPTION

1. Introduction

To take the appropriate results from the output,
u1ser must check the convergence. This can be done by
comparing *the convergence indicators, lift coefficient and
displacement thickness at trailing edge, when the
computation is completed successfully for the given sweegs.
If the convergence indicators show steady values over some
sweeps i.e. each differ-nce of the convergence indicators is
1ess than 1%, the results are considered as converged.

Sometimes, the user may experience failure in
computations at low Reynolds numbers and high angles of
attack due to numerical breakdowns. These breakdowns take
p.ace when Newton iteration does not converge near to the
trailing edge on the upper surface or the computation is
terminated by Fortran error with this message:

I{FY 2511 SSQRT; ARG = argument, LESS THAN ZERO

Also, extensive flow separation cause numerical

breakdowns of the boundary layer computation. These

unrealistically large regions of separation at low Reynolds
numbers can be reduced by changing the transitiocnal flow
model .

2. Cetaiied QOutput Data Description

The output of the computer program




and 0 can be divided into three parts as fcllows:
1. Input data and inviscid lift coefficient .

2. Alternating boundary layer parameters for each
sur face and wake.

3. Inviscid and viscous pressure distributions ‘A
The following is the list of computed boundary layer

parameters in the order in which they appear in the output

print. .
Name Name :
in print in program Definition Explanation
X(NX) X(I) é_ Dimensionless sur-
c face distance from

the stagnation point

X/C(NX) XC(I) X Dimensionless chord-
c wise distance from ,
leading edge ‘
V(1,NX) VWL(D) ( a’e ) Dimensionless wall .
d7* shear stress para-
. meter.
CF CF(I) 2 Tw Local skin friction '
#Ue" coefficient ;
»* 4
DELST DLS(I) d Dimensionless dis- .
c placement thickness. .
* oo ,
4 = j (1 - u )dy -
o Ue -
s
THETA THETA(I) 6 Dimensionless
= c momentum thickness 3
9 =J 9] ('_ U )dy .
A Ue Ue K
UE (NX) UE(T) Uel Dimensionless exter-
Uoo nal velocity
computed from the
inviscid method with '

viscous effect.
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W(NP,NX) WNP(I) UeV Dimensionless exter-
U nal veloclity
computed from the
interactive boundary
layer method.

D(NX) D(KX) * Product of velocity

Uev JKJEE and displacement

U c thickness in dimen-

DB(NX) DB(KX) sionless form for
the current sweep
(D), from the pre-
vious sweep (DB).
D and DB are printed
in the output as up-
dated values through
the relaxation

procedure

Frew (NX) = ;ou (Nx)[' +w( WA l)J

LEWX)

IT ITN(I) Iteration count for
thie convergence of
solutions at a given
NX-station.

NP NNP(I) Number of points

across the boundary
layer.

C. HOW TO CHANGE THE ORIGINAL PROGRAM
Cebeci's computer program is written entirely in FORTRAN
and consists of the following eight FORTRAN files:
FILE 1 FORTRAN Al 3

FILE 2 FORTRAN Al ’

FILE 3 FORTRAN Al
FILE 4 FORTRAN Al
FHE-5—FORFRAN—ALT

FILE 6 FORTRAN Al g
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FILE 7 FORTRAN A1l

FILE 8 FORTRAN Al
FILE 9 FORTRAN Al n
Also, the user needs the following six JCL files to run :&
changed program: f
QUEST 1 JCL Al :
ALLPDS JCL Al
QUEST 3 JcL Al
STOPDS JCL Al :
LOADMOD JCL a1l :
INTAPCLG JCL Al E
"QUEST 1" lists all data set on MSS (Mass Storage n
System) that belong to student user ID E
number and in group PUB4B (public disk ?
. voliume), which deletes the data set 180 1;
days after creation. ,§
"ALLPDS" allocates space for a PDS (partitioned ;:
Data Set) on PUB4B prior to reading a i.
data set into it, using the utility ‘i
program IEFBR 14 which pre-allocates or E
deletes data sets. N
"QUEST 3" lists the members of a PDS and calcuiates ;i
the remaining availabie space within the E'
data set. :f
"5TOPDS” piaces a FORTRAN source file in a PDS. i
2
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The SYSUT2 DD statement describes the out-
put data set and the SYSUT1 DD statement

describes the input data set.

"LOADMOD"” creates a load module.

"INTAPCLG" conpiles source. cede, laads and executes text file.

A list of all JCL files is given at the end of this chapter

and more information is in the User's Guide to MVS at NPS

(1986) .

The following is the procedure to change the program

and run it:

Step 1

4
4 .

Make changes in FORTRAN files as required. Remember
those eight FORTRAN files compose one program.

Thus, the user must check all files which are
related to changes.

2. Review and update FORTRAN errors, if necessary.

Step 2

1. Change job name "xxxxxx", user ID number "nnunn" and
library name "yyy" with user's own in all JCL files
to make them be the user's.

2. Submit four JCL files:
"QUEST1" "ALLPDS" "QUEST 3" "LOADMOD".

Step 3

Do the following for all FORTRAN files to submit

them to user's library.

1. Open "STOPDS" JCL file.

2. Change the FORTRAN file number indicated by n on the

sixth line.

//SYSUT2 DD DISP --- YYYLIB (INTAIR n)
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3. Insert the FORTRAN file between
"//SYSUTI DD' * and n/*u_

“l’ AR

~

4. Submit "STOPDS" JCL file.

5. Check the result by any error message at the very i
top and bottom part and condition code. N
6. Update errors, 1f necessary. Ef
Step 4
Do the following to run the changed program.
1. Open "INTAPCLG" JCL file. .
2. Insert the input data between :
"//GO. SYSIN DD % " and "/*". E;
3. Submit "INTAPCLG" JCL file §
From the second change, do steps 1, 3 and 4. N
D. APPLICATION OF CEBECI'S PROGRAM z
Cebeci's interactive program was applied to a single -
. airfoil, FX 63 -137, at three Reynolds numbers. The print ,?
flag is O and the number of airfoil coordinates is 49 for ;s
ail cases. The results are compared with experimental data |
and the turbulence model has been changed to get better
results. The experimental results are taken from Reference
9.

Figure 4.2 and 4.3 show the comparison of l1ift and drag ;
coefficients for three Reynolds numbers. Drag coefficients i
are computed at the trailing edge. It is seen that the -
results are closer to the experimental data as the Reynolds ?
number increases. ;
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Figures 4.4, 4.5 and 4.6 show the skin friction
coefficients on the upper and lower surfaces as a function
of angle of attack for the same three Reynolds numbers.
Legends indicate the angle of attack. As the Reync.ids
number increases, the length of the separation bubble
decreases on both surfaces for the same angle of attack.
Especially, Figure 4.4, which has a different label of
y-axis from the other figures, indicates an unrealistic flow
on the upper surface at low Reynolds number. In Figure 4.5
and 4.6, however, the flow on the upper surface is separated
from about 80% chord at ail angles of attack.

Figures 4.7, 4.8 and 4.9 present how the displacement
thickness varies according to the angle of attack and the
Reynolds number. As the Reynoids number increases, the
displacement thickness decreases on both surfaces. As the
angle of attack increases, it also increases on the upper
zur face, but decreases on the lower surface.

Table 4.1 represents the computed and fixed transition

lvcations which are used in Figure- 4.10 4.13. The

[39)

computed transition locations XTRL = C.288922 at ALPD = 8
degrees and XTRL = 0.206866 at ALPD = 10 degrees were
printed incorrectly. In thiz case, the correct transition

locations can be obtained by the following procedure:

1. Calculate the difference of XTRL's at ALPD = 4§
degrees and 6 degrees.

2. Add the Jdifference to XTRL of ALPD = 6 degrees and

[oA)
(0]

!
[
1
1
[
1
{




. .

take the result as « temporary XTRL for ALPD =
8 degrees.

SRR

3. Fix transition location with the temporary XTRL

4. Run the program to print XC(I), GAMTR{(I) from
SUBROUTINE OUTPUT in FILE 3 FORTRAN Al.

=
5. Take XC(I), where the value of GAMTR(I) is finally 4
equal to zero, as the correct transition location. £
6. From the same procedures with XTRL's at ALPD = 6 :
degrees and 8 degrees, obtain the correct transition ’
location for ALPD = 10 degrees. Q
Figures 4.10~43.13 show the effect of variations in the E
empirical constant, GY}r , in turbulence model at Rp = 0.28 z
X 106 . In the legend of Figures 4.1C and 4.11, the three E
numbers are the values of the empirical constant, C means p
that the transition location is computed by Egq. (4.1} and F >
e}
means that it is fixed. The lift curve is closer to the ﬁ
exper imental data as the empirical constant decreases, but N
) the drag curve is closest when the empirical constant is
120.
The reason why we can obtain better results by reducing
the empirical constant is shown in Figure 4.12 and 4.12. E
GAMMATR (Y3p) is the intermittency factor which is a ;
furiction of the x-coordinate with vaiues 0.0 at the "
beginning point of transition and 1.0 at the ending point of i
transition. The intermittency factor makes it possible to £
avoid a sudden transition from laminar to turbulent by .
smoothing out the step-shaped change of visccsity from f
Kinematic to eddy. The relation between the empiricatl :
.}
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constant and the intermittency factor is given as:

3 -1, 3¢ X
7;r = 1 - exp [— (x - xztpr) Ue R’Xtr j 1 dx ]

Gﬂr Xep Ue
where, Xer denotes the beginning point cf transition.

The transition length is mainly determined by the
empirical constant th_ which 1z set as 1200 in Cebeci's
original program. Decreasing the value of the empirical
constant reduces the transition length. In this way, the
anrealistic flow shown in Figure 4.4 can be avoided and more
reasonable results, which are closer to the experimental
data, can be obtained. In Figure 4.12 and 4.13, the legend
indicates the angle of attack, and each of four line
patterns is used twice for two angles of attack (e.g. —;

4 degrees and 4 degrees). The direction of curves, as the
angle of attack increases, is from right to left at the

upper surface (Figure 4.12) and from left to right at the

lower surface (Figure 4.13).
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List of JCL Files

xxxxxxx ALLPDS JCL Al 3 3 3 3 3 X %

/7 XXXXXX JOB (HNHN,9999), "ALLOCATE PDS',CLASS=A
//%MATN ORG=HPGVMI1 . NNNNP

7/ EXEC PGM=ITEFBR14

/7/SYSPRINT DD SYSQUT=A

/7DDl DD UNIT=3320V,M5VGP=PUB4B,DISP=(NEW,CATLG, DELETE),
Vs SPACE=(CYL,(4,4,6)),D5H=MSS . SHHNN.YYYLIB

Va4

AXHNEXX  QUESTI JCL Al  XExxxxx

77 XXXXXX JOB (NNHN,9999), *QUESTION',CLASS=A
/7 %MATH ORG=NPGVML . HNHNP

/7  EXEC PGM=IDCAMS

//SYSPRINT DD SY50UT=A

//75YSTH DD x

LISTDSET GROUP(PUB4B) LEVEL(MSS.SHNHN)
/%
/7

¥AXXAXXE  QUESTI  JCL  A)  ex:xx

77 XXXXXX JOB (NNNN,9999),'LIST',CLASS=A

/7%MAIH ORG=NPGVM] . HNNNP

/7 EXEC PGM=1EHLIST

/7S3YSPRINT DD SYS0UT=A

s/7DD1 DD UNIT=3330V,VOL=SER=MS0005,DISP=SHR

/75YSIN DD »
LISTVYOC FORMAT,VvOL=3330V=M50005, DSNAME=MSS .SNNNN.YYYLIB
LISTPDS VOL=3330V=MS0005,DSNAME=MSS . SNNHN.YYYLIB

/%

/7

xxexxxxx STOPDS JCL Al X 3 3 3 X % %

7/ XXXXXX JOB (NNHMN,9999), 'PLACE PDS'

77 #MATH ORG=NPGVML . NNNHP

/7 EXEC PGM=IEBGENER

/7/3YSPRINT DD SYSOUT=A

775Y51IN DD DUMMY

//73Y5UT2 DD DISP={(OLD,KEEP), DSNAME=MSS SHNHNN.YYYLIB(INTAIR_ ),
77 DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)

//5YS5UT1 DD =

/%

4




......

yxxxxxx LOADMOD JCL Al % 3 3 3 3 % X%

77 XXXXX JOB (NNHN,9999), 'CREATE LCADMODULE',CLASS=C
/7 %MAIHN ORG=NPGVMI1 .HNNNP

77 EXEC FORTVCL,PARM.FORT='LVL(77),NOS,NOX,NOMAP*
/7FORT .SYSPRINT DD DUMMY

//FORT.SYSIN PD DISP=SHR,DSH=MSS.SNNNN.YYYLIB(INTAIR])
s DD DISP=SHR,DSN=MSS.SHNHN.YYYLIB(INTAIR2)
V4 DD DISP=SHR,DSN=MSS . SHNHH.YYYLIB(INTAIR3)
77 DD DISP=SHR,DSH=MGS . SHNHH.YYYLIB(INTAIRG)
Va4 DD DISP=SHR,DSH=MS3S . SHNNN.YYYLIB(INTAIRG)
s DD DISP=SHK,DSN=M3S.SHNHN.YYYLIBCINTAIR?)
4 DD DISP=SHR,DSN=MSS . SHNHN.YYYLIB(INTAIR3)
Vs DD DISP=5HR,DSH=MSS . SHHNNN.YYYLIB(INTAIRY)
/7/LKED.SYSLMOD DD DISP=SHR,DSH=MSS.SHHHN.YYYLIBCINTCAS)

//LKED.SYSIN DD DSH=NULLFILE
/77

}exxxx%  INTAPCLG JCL Al 63060exxx

77 XXXXXX JOB (NNMN,9999),'COMP LOAD AND GO',CLASS=G
//7%¥MATIN ORG=HPGVMI] . NNHNP

7/ EXEC FORTVCLG,PARM.FORT='LVL(77),N0S,NOX, NOMAP',
77 REGION.GO0=1280K

7//FORT .SYSPRINT DD DUMMY

//FORT.SYSIN DD DISP=SHR,DSN=MSS.SNHNN.YYYLIBC(INTAIRL)
/7 DD DISP=SHR,DSN=MSS . SHNHN.YYYLIB(INTAIR2)
7/ DD DISP=5HR,DSH=MSS.SHNHN.YYYLIB(INTAIR3)
77 DD DISP=5HR,DSN=MSS . SHNNN.YYYLIB(INTAIRG)
77 DD DISP=SHR,DSN=MSS.SHHNN.YYYLIB(INTAIRG)
77 DD DISP=SHR,DSN=MSS.SHNNN.YYYLIBC(INTAIR?)
s DD DISP=SHR,DSN=MSS.SHNNN.YYYLIBCINTAIRS)
7/ DD DISP=SHR,DSH=MSS.SHHHH . YYYLIBCINTAIRY)

/7 LKED.SYSPRINT DD DUMMY
7/LKED.SYSIN DD DSH=NULLFILE
/7/GO.FTO01F001 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
/7/GO.FT02F001 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
s7GO.FTO3F001 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
s7/GO.FTO4F001 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
/7/GO.FT99F001 DD UNIT=SYSDA,SPACE=(CYL,E},l))
1))
(1,1
(1,1))
(1,1))

s/7/GO.FT08F001 DD UNIT=SYSDA,SPACE=(CYL,
/sGO.FTO09F001 DD UNIT=SYSDA,SPACE=(CYL,
7/7/GO.FT10F001 DD UNIT=SYSDA,SPACE=(CYL,
/s/GO.FT11F001 DD UNIT=S5YSDA,SPACE=(CYL,
/7/G0.FT06F001 DD SYS0UT=A

77G0.SYSIN DD x

/%

/7
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V. CONCLUSIONS

Cebeci's interactive computer program was applied to
the Wortmann-Althaus FX 63-137 airfoil to show the
capability of strong viscous/inviscid interaction methods to
predict airfoil flows at low Reynolds numbers.

From the comparisons with the experimental data, it
was confirmed that the results are closer to the
experimental data as the Reynolds number increases.

Also, much better results were obtained by decreasing
the empirical constant Gf}r

Therefore, it was concluded that the boundary layer
transition model has an important influence on the

predictive capability of viscous/inviscid interaction

me thods.
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